Laboratory 1

(Due date: **002/003**: January 30th, **004**: January 31st, **006**: February 1st)

OBJECTIVES

- ✓ Introduce VHDL Coding for FPGAs.
- ✓ Learn to write testbenches in VHDL.
- ✓ Learn the Xilinx FPGA Design Flow with the Vivado HL: Synthesis, Simulation, and Bitstream Generation.
- ✓ Learn how to assign FPGA I/O pins and download the bitstream on the Nexys[™] A7-50T Board (or A7-100T).

VHDL CODING

DESIGN PROBLEM

✓ Refer to the <u>Tutorial</u>: <u>VHDL for FPGAs</u> for a list of examples.

NEXYSTM A7-50T FPGA TRAINER BOARD SETUP

- The Nexys A7-50T Board can receive power from the Digilent USB-JTAG Port (J6). Connect your Board to a computer via the USB cable. If it does not turn on, connect the power supply of the Board.
- Nexys A7-50T documentation: Available in <u>class website</u>.

FIRST ACTIVITY (100/100)

•	Majority function: An LED is lit (f=1) if any three or all four of the switches (represented by
	Boolean variables a, b, c, d) are in the same position, where '1' represents the ON position of a
	switch, and '0' the OFF position.

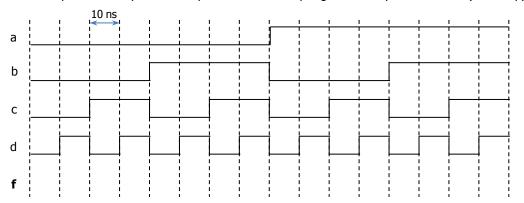
The Boolean variable f is represented by an LED ('1': LED is ON, '0': LED is OFF). For example: if $abcd=1010 \rightarrow f=0$. If $abcd=0010 \rightarrow f=1$.

- ✓ Complete the truth table for this circuit: (5 pts)
- ✓ Derive (simplify if possible) the Boolean expression: (10 pts)

f =

a	b	С	d	f
0	0	0	0	
0	0	0	1	
0	0	1	0	
0	0	1	1	
0	1	0	0	
0	1	0	1	
0	1	1	0	
0	1	1	1	
1	0	0	0	
1	0	0	1	
1	0	1	0	
1	0	1	1	
1	1	0	0	
1	1	0	1	
1	1	1	0	
1	1	1	1	

PROCEDURE


- Vivado Design Flow for FPGAs: complete the following steps (follow the order strictly): (85 pts)
 - ✓ Create a new Vivado Project. Select the corresponding Artix-7 FPGA device as per the table:

Kit	Artix-7 FPGA Device	Master XDC File	Comments
Nexys A7-50T	XC7A50T-1CSG324I	Nexys-A7-50T-Master.xdc	Recommended board.
Nexys A7-100T	XC7A100T-1CSG324C	Nexys-A7-100T-Master.xdc	
Basys 3	XC7A35T-1CPG236C	Basys-3-Master.xdc	Suggested if you only take ECE2700
Nexys 4	XC7A100T-1CSG324C	Nexys4_Master.xdc Nexys4DDR Master.xdc	Discontinued

✓ Write the VHDL code that implements the simplified Boolean expression. Synthesize your circuit (Run Synthesis).

✓ Write the VHDL testbench to test every possible combination of the inputs.

The figure below provides a suggestion of what the input waveform described by your testbench should look like. Complete the output f so that you can compare it with the output generated by the simulator (next step).

✓ Perform <u>Functional Simulation</u> (Run Simulation → Run Behavioral Simulation). Verify that the output f generated by the simulator matches the one you manually completed. **Demonstrate this to your TA.**

✓ I/O Assignment: Generate the XDC file. Download the corresponding constraints file (XDC) of your board and edit it.

□ Use SW3, SW2, SW1, SW0 as inputs a, b, c, d respectively. Use LED0 as the output f.

Board pin names	SW3	SW2	SW1	SW0	LED0	
Signal names in code	а	b	С	d	f	

The board pin names (SW3-SW0, LED0) are used by all the listed boards (Nexys A7-50T/A7-100T, Basys 3, Nexys 4/DDR). The I/Os listed here are all active high.

✓ Implement your design (Run Implementation).

✓ Do $\underline{\text{Timing Simulation}}$ (Run Simulation \rightarrow Run Post-Implementation Timing Simulation). **Demonstrate this to your TA.**

✓ Generate the bitstream file (Generate Bitstream).

✓ Download the bitstream on the FPGA (Open Hardware Manager) and test. Demonstrate this to your TA.

Submit (as a .pdf) this lab sheet completed and signed off by the TA (or instructor)

 Submit (<u>as a .zip file</u>) the generated files: VHDL code, VHDL testbench, and XDC file to Moodle (an assignment will be created). DO NOT submit the whole Vivado Project.

 \checkmark Your .zip file should only include one folder. Do not include subdirectories.

It is strongly recommended that all your design files, testbench, and constraints file be located in a single directory. This will allow for a smooth experience with Vivado.

✓ You should only submit your source files AFTER you have demoed your work. Submission of work files without demo will get NO CREDIT.

.a	b1	
	top.vhd	Design file
	top_tb.vhd	Testbench file
	lab1.xdc	Constraints file

TA signature:	Date:
i A Signature:	Date: